Skip to main content

Ontogeny of intestinal motility in correlation to neuronal development in zebrafish embryos and larvae

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

For the first time, spontaneous intestinal activity was demonstrated and quantified before the onset of exogenous feeding in zebrafish Danio rerio embryos and larvae in vivo, using digital motion analysis. At 3 days post fertilization (dpf), erratic and spontaneous contraction waves were observed in the gut. Later (4–7 dpf), more distinct contraction patterns were distinguished, and anterograde and retrograde contraction waves projecting anally and orally along the intestine, respectively, as well as local rectal contraction waves could be identified and quantified. The frequency of both anterograde intestinal and local rectal contractions increased significantly during the first days of development. There was a tendency towards shorter anterograde contraction waves in the first dpf stage investigated, but the velocity of the waves did not differ significantly between the different dpf stages. The presence of developing neurones in the gut of zebrafish was established using immunohistochemistry, staining for a suite of marker proteins (Hu C/D, HNK-1 and acetylated tubulin). Structural neurones were present in the developing gut from the first dpf stage investigated (2 dpf). In conclusion, during the period (3–7 dpf) when erratic contraction waves turn into a more organized pattern of motility there is also a pronounced development of the innervation, suggesting a correlation in time of the development of gut motility and its neuronal control.

Keywords: D; Danio rerio; HNK-1; HU C; enteric nervous system; motility; ontogeny

Document Type: Regular Paper

DOI: http://dx.doi.org/10.1046/j.1095-8649.2003.00149.x

Affiliations: 1: Institute for Zoology and Limnology, University of Innsbruck, A-6020 Innsbruck, Austria 2: Department of Zoophysiology, Göteborg University, Box 463, SE 405 30 Göteborg, Sweden and

Publication date: August 1, 2003

bsc/jfb/2003/00000063/00000002/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more