Allometric constraints on stability and maximum size in flying fishes: implications for their evolution

Author: Davenport, J.

Source: Journal of Fish Biology, Volume 62, Number 2, February 2003 , pp. 455-463(9)

Publisher: Wiley-Blackwell

Buy & download fulltext article:

OR

Price: $48.00 plus tax (Refund Policy)

Abstract:

Flying fish wing area and wing-loading both rise in strongly negative allometric fashion with increasing body length and mass. Evidence is presented to show that this occurs because: (1) the leading edge of the pectoral fin ‘wing’ is fixed at 24% of standard length ( LS) from the snout, (2) the wing length cannot exceed 76% of LS or the tips will interfere with propulsive tail beat and (3) increased mass demands faster flying and wings with better lift : drag ratios; this selects for tapered, higher aspect ratio wing shapes. A consequence of this situation is that larger flying fishes have centres of mass increasingly further behind the centre of wing pressure. Resultant longitudinal instability restricts the maximum size of the two-winged design and the pelvic fins of four-wingers act as a stabilizing tailplane. These data indicate that the accepted model of evolution of flight in flying fishes (by extension of ballistic leaps) is flawed; it is proposed that evolution of lift-supported surface taxiing in half-beaks with enlarged pectoral fins (enhanced by ground effect) was an essential preliminary; subsequent forward migration of the centre of mass to within the wing chord permitted effective gliding.

Keywords: allometry; evolution; flying fishes; ground effect; stability

Document Type: Research Article

DOI: http://dx.doi.org/10.1046/j.1095-8649.2003.00041.x

Affiliations: Department of Zoology, Ecology & Plant Science, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland

Publication date: February 1, 2003

Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page