Skip to main content

Divergent and narrower climatic niches characterize polyploid species of European primroses in Primula sect. Aleuritia

Buy Article:

$48.00 plus tax (Refund Policy)

Abstract:

Abstract
Aim

It is hypothesized that the ecological niches of polyploids should be both distinct and broader than those of diploids – characteristics that might have allowed the successful colonization of open habitats by polyploids during the Pleistocene glacial cycles. Here, we test these hypotheses by quantifying and comparing the ecological niches and niche breadths of a group of European primroses.
Location

Europe.
Methods

We gathered georeferenced data of four related species in Primula sect. Aleuritia at different ploidy levels (diploid, tetraploid, hexaploid and octoploid) and used seven bioclimatic variables to quantify niche overlap between species by applying a series of univariate and multivariate analyses combined with modelling techniques. We also employed permutation‐based tests to evaluate niche similarity between the four species. Niche breadth for each species was evaluated both in the multivariate environmental space and in geographical space.
Results

The four species differed significantly from each other in mono‐dimensional comparisons of climatological variables and occupied distinct habitats in the multi‐dimensional environmental space. The majority of the permutation‐based tests either indicated that the four species differed significantly in their habitat preferences and ecological niches or did not support significant niche similarity. Furthermore, our results revealed narrower niche breadths and geographical ranges in species of P. sect. Aleuritia at higher ploidy levels.
Main conclusions

The detected ecological differentiation between the four species of P. sect. Aleuritia at different ploidy levels is consistent with the hypothesis that polyploids occupy distinct ecological niches that differ from those of their diploid relative. Contrary to expectations, we find that polyploid species of P. sect. Aleuritia occupy narrower environmental and geographical spaces than their diploid relative. These results on the ecological niches of closely related polyploid and diploid species highlight factors that potentially contribute to the evolution and distribution of polyploid species.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/jbi.12085

Publication date: July 1, 2013

bsc/jbiog/2013/00000040/00000007/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more