Climate oscillations and species interactions: large‐scale congruence but regional differences in the phylogeographic structures of an alpine plant and its monophagous insect

Authors: Borer, Matthias1; Arrigo, Nils2; Buerki, Sven; Naisbit, Russell E.3; Alvarez, Nadir4

Source: Journal of Biogeography, Volume 39, Number 8, 1 August 2012 , pp. 1487-1498(12)

Publisher: Wiley-Blackwell

Buy & download fulltext article:

OR

Price: $48.00 plus tax (Refund Policy)

Abstract:

Abstract

Aim  To predict the fate of alpine interactions involving specialized species, using a monophagous beetle and its host plant as a case study.

Location  The Alps.

Methods  We investigated genetic structuring of the herbivorous beetle Oreina gloriosa and its specific host‐plant Peucedanum ostruthium. We used genome fingerprinting (in the insect and the plant) and sequence data (in the insect) to compare the distribution of the main gene pools in the two associated species and to estimate divergence time in the insect, a proxy for the temporal origin of the interaction. We quantified the similarity in spatial genetic structures by performing a Procrustes analysis, a tool from shape theory. Finally, we simulated recolonization of an empty space analogous to the deglaciated Alps just after ice retreat by two lineages from two species showing unbalanced dependence, to examine how timing of the recolonization process, as well as dispersal capacities of associated species, could explain the observed pattern.

Results  Contrasting with expectations based on their asymmetrical dependence, patterns in the beetle and plant were congruent at a large scale. Exceptions occurred at a regional scale in areas of admixture, matching known suture zones in Alpine plants. Simulations using a lattice‐based model suggested these empirical patterns arose during or soon after recolonization, long after the estimated origin of the interaction c. 0.5 million years ago.

Main conclusions  Species‐specific interactions are scarce in alpine habitats because glacial cycles have limited the opportunities for co‐evolution. Their fate, however, remains uncertain under climate change. Here we show that whereas most dispersal routes are paralleled at a large scale, regional incongruence implies that the destinies of the species might differ under changing climate. This may be a consequence of the host dependence of the beetle, which locally limits the establishment of dispersing insects.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2012.02703.x

Affiliations: 1: Museum of Natural History Neuchâtel, 2000 Neuchâtel, Switzerland 2: Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721, USA 3: Unit of Ecology and Evolution, Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland 4: Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland

Publication date: August 1, 2012

Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page