Skip to main content

Global patterns in the shape of species geographical ranges reveal range determinants

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract

Aim  Do species range shapes follow general patterns? If so, what mechanisms underlie those patterns? We show for 11,582 species from a variety of taxa across the world that most species have similar latitudinal and longitudinal ranges. We then seek to disentangle the roles of climate, extrinsic dispersal limitation (e.g. barriers) and intrinsic dispersal limitation (reflecting a species’ ability to disperse) as constraints of species range shape. We also assess the relationship between range size and shape.

Location  Global.

Methods  Range shape patterns were measured as the slope of the regression of latitudinal species ranges against longitudinal ranges for each taxon and continent, and as the coefficient of determination measuring the degree of scattering of species ranges from the 1:1 line (i.e. latitudinal range = longitudinal range). Two major competing hypotheses explaining species distributions (i.e. dispersal or climatic determinism) were explored. To this end, we compared the observed slopes and coefficients of determination with those predicted by a climatic null model that estimates the potential range shapes in the absence of dispersal limitation. The predictions compared were that species distribution shapes are determined purely by (1) intrinsic dispersal limitation, (2) extrinsic dispersal limitations such as topographic barriers, and (3) climate.

Results  Using this methodology, we show for a wide variety of taxa across the globe that species generally have very similar latitudinal and longitudinal ranges. However, neither neutral models assuming random but spatially constrained dispersal, nor models assuming climatic control of species distributions describe range shapes adequately. The empirical relationship between the latitudinal and longitudinal ranges of species falls between the predictions of these competing models.

Main conclusions  We propose that this pattern arises from the combined effect of macroclimate and intrinsic dispersal limitation, the latter being the major determinant among restricted‐range species. Hence, accurately projecting the impact of climate change onto species ranges will require a solid understanding of how climate and dispersal jointly control species ranges.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: Departamento de Zoología, Facultad de Biología, Universidad de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain 2: Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain 3: Ecoinformatics and Biodiversity Group, Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark

Publication date: 2012-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more