Skip to main content

Direct and indirect effects of area, energy and habitat heterogeneity on breeding bird communities

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract Aim 

To compare the ability of island biogeography theory, niche theory and species–energy theory to explain patterns of species richness and density for breeding bird communities across islands with contrasting characteristics. Location 

Thirty forested islands in two freshwater lakes in the boreal forest zone of northern Sweden (65°55′ N to 66°09′ N; 17°43′ E to 17°55′ E). Methods 

We performed bird censuses on 30 lake islands that have each previously been well characterized in terms of size, isolation, habitat heterogeneity (plant diversity and forest age), net primary productivity (NPP), and invertebrate prey abundance. To test the relative abilities of island biogeography theory, niche theory and species–energy theory to describe bird community patterns, we used both traditional statistical approaches (linear and multiple regressions) and structural equation modelling (SEM; in which both direct and indirect influences can be quantified). Results 

Using regression-based approaches, area and bird abundance were the two most important predictors of bird species richness. However, when the data were analysed by SEM, area was not found to exert a direct effect on bird species richness. Instead, terrestrial prey abundance was the strongest predictor of bird abundance, and bird abundance in combination with NPP was the best predictor of bird species richness. Area was only of indirect importance through its positive effect on terrestrial prey abundance, but habitat heterogeneity and spatial subsidies (emerging aquatic insects) also showed important indirect influences. Thus, our results provided the strongest support for species–energy theory. Main conclusions 

Our results suggest that, by using statistical approaches that allow for analyses of both direct and indirect influences, a seemingly direct influence of area on species richness can be explained by greater energy availability on larger islands. As such, animal community patterns that seem to be in line with island biogeography theory may be primarily driven by energy availability. Our results also point to the need to consider several aspects of habitat quality (e.g. heterogeneity, NPP, prey availability and spatial subsidies) for successful management of breeding bird diversity at local spatial scales and in fragmented or insular habitats.

Keywords: Area; Sweden; birds; density; energy availability; habitat heterogeneity; habitat selection; island ecology; species richness; structural equation modelling

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1365-2699.2010.02470.x

Affiliations: 1: Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden 2: Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden

Publication date: 2011-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more