If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Relative need for conservation assessments of vascular plant species among ecoregions

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract Aim 

(1) To determine the relative need for conservation assessments of vascular plant species among the world’s ecoregions given under-assessed species distributions; (2) to evaluate the challenge posed by the lack of financial resources on species assessment efforts; and (3) to demonstrate the utility of nonlinear mixed-effects models with both homoscedastic and heteroscedastic error structures in the identification of species-rich ecoregions. Location 

Global. Methods 

We identified the world’s ecoregions that contain the highest vascular plant species richness after controlling for area using species–area relationship (SAR) models built within a mixed-effects multi-model framework. Using quantitative thresholds, ecoregions with the highest plant species richness, historical habitat loss and projected increase in human population density were deemed to be most in need of conservation assessments of plant species. We used generalized linear models to test if countries that overlap with highly important ecoregions are poorer compared with others. Results 

We classed ecoregions into nine categories based on the relative need for conservation assessments of vascular plant species. Ecoregions of highest relative need are found mostly in the tropics, particularly Southeast Asia, Central America, Tropical Andes and the Cerrado of South America, and the East African montane region and its surrounding areas. Countries overlapping with ecoregions deemed important for conservation assessments are poorer as measured by their capita gross national income than the other countries. The nonlinear mixed modelling framework was effective in reducing residual spatial autocorrelation compared with nonlinear models comprised of only fixed effects. In contrasting multiple SAR models to identify species-rich ecoregions, there was not one SAR model that fitted best across all biomes. Not all SAR models displayed homoscedastic errors; therefore it is important to consider models with both homoscedastic and heteroscedastic error structures. Main conclusions 

We propose that conservation assessments should be conducted first in ecoregions with the greatest predicted species richness, historical habitat loss and future human population increase. As ecoregions deemed to be important for conservation assessments are located in the poorest countries, we urge international aid agencies and botanic gardens to cooperate with both local and international scientists to fund and implement conservation assessment programmes there.

Keywords: Biodiversity; IUCN; conservation assessment; conservation biogeography; habitat loss; human population; plant species; policy; species–area relationship

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2010.02383.x

Affiliations: 1: Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore 2: The Environment Institute and School of Earth & Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia

Publication date: January 1, 2011

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more