Skip to main content

Phylogeography of the world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract Aim 

There is a need for more Southern Hemisphere phylogeography studies, particularly in Australia, where, unlike much of Europe and North America, ice sheet cover was not extensive during the Last Glacial Maximum (LGM). This study examines the phylogeography of the south-east Australian montane tree species Eucalyptus regnans. The work aimed to identify any major evolutionary divergences or disjunctions across the species’ range and to examine genetic signatures of past range contraction and expansion events. Location 

South-eastern mainland Australia and the large island of Tasmania. Methods 

We determined the chloroplast DNA haplotypes of 410 E. regnans individuals (41 locations) based on five chloroplast microsatellites. Genetic structure was examined using analysis of molecular variance (AMOVA), and a statistical parsimony tree was constructed showing the number of nucleotide differences between haplotypes. Geographic structure in population genetic diversity was examined with the calculation of diversity parameters for the mainland and Tasmania, and for 10 regions. Regional analysis was conducted to test hypotheses that some areas within the species’ current distribution were refugia during the LGM and that other areas have been recolonized by E. regnans since the LGM. Results 

Among the 410 E. regnans individuals analysed, 31 haplotypes were identified. The statistical parsimony tree shows that haplotypes divided into two distinct groups corresponding to mainland Australia and Tasmania. The distribution of haplotypes across the range of E. regnans shows strong geographic patterns, with many populations and even certain regions in which a particular haplotype is fixed. Many locations had unique haplotypes, particularly those in East Gippsland in south-eastern mainland Australia, north-eastern Tasmania and south-eastern Tasmania. Higher haplotype diversity was found in putative refugia, and lower haplotype diversity in areas likely to have been recolonized since the LGM. Main conclusions 

The data are consistent with the long-term persistence of E. regnans in many regions and the recent recolonization of other regions, such as the Central Highlands of south-eastern mainland Australia. This suggests that, in spite of the narrow ecological tolerances of the species and the harsh environmental conditions during the LGM, E. regnans was able to persist locally or contracted to many near-coastal refugia, maintaining a diverse genetic structure.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Chloroplast microsatellite; Eucalyptus; Pleistocene refugia; Tasmania; climate change; phylogeography; south-eastern Australia

Document Type: Research Article

Affiliations: 1: School of Forest and Ecosystem Science, University of Melbourne and Cooperative Research Centre for Forestry, Creswick, Australia 2: School of Forest and Ecosystem Science, University of Melbourne and Cooperative Research Centre for Forestry, Parkville, Australia

Publication date: 2010-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more