Skip to main content

Interspecific pairwise relationships among body size, clutch size and latitude: deconstructing a macroecological triangle in birds

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract Aim 

Ecogeographical ‘rules’, large-scale patterns in ecological variables across geographical space, can provide important insights into the mechanisms of evolution and ecological assembly. However, interactions between rules could obscure both the observation of large-scale patterns and their interpretation. Here, we examine a system of three variables interrelated by ecogeographical rules – the latitudinal increase in body size within closely related homeotherms (Bergmann’s rule), the negative allometry of clutch size (Calder’s rule) and the latitudinal increase in clutch size (Lack’s rule) – in a global dataset of birds. Location 

Global. Methods 

We used linear regressions and meta-analysis techniques to quantify the three rules across clades and through the taxonomic hierarchy. Path analysis was used to quantify interactions between rules at multiple taxonomic levels, as a function of both phylogenetic inheritance of traits and indirect feedbacks between the three rules. Independent contrasts analyses were performed on four clades with available phylogenies, and the taxonomic partitioning of variation in each trait was quantified. Results 

Standardizing across all clades, Lack’s and Bergmann’s rules were supported at all taxonomic levels, with Calder’s rule being supported at the order level. Lack’s rule was consistently stronger and more often detected than the other two rules. Path analysis showed that the indirect effects often outweighed the direct effects of Calder’s rule at the genus level and Bergmann’s rule at the order level. Strong interactions between Calder’s and Bergmann’s rules led to a trade-off between the rules depending on taxonomic resolution. Main conclusions 

We found strong interactions between Bergmann’s, Lack’s and Calder’s rules in birds, and these interactions varied in strength and direction over the taxonomic hierarchy and among avian clades. Ecogeographical rules may be masked by feedbacks from other, correlated variables, even when the underlying selective mechanism is operating. The apparently conflicting pairwise relationships among clutch size, body size and latitude illustrate the difficulty of interpreting individual pairwise correlations without recognition of interdependence with other variables.

Keywords: Allometry; Bergmann’s rule; Calder’s rule; Lack’s rule; birds; macroecology; positive semidefinite condition

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2009.02175.x

Publication date: January 1, 2010

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more