If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

A model of geographical, environmental and regional variation in vegetation composition of pyrogenic grasslands of Florida

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract Aim 

To develop a landscape-level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location 

North and central Florida, USA. Methods 

We measured plant species composition and cover in 271 plots throughout the study region. A variation-partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results 

Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three-way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions 

Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local- and regional-scale environmental effects as well as possible historical constraints on floristic variation in pine-dominated pyrogenic grasslands of the south-eastern USA.

Keywords: Climatic variation; Florida; USA; edaphic variation; environmental–vegetation model; floristic variation; grasslands; spatial variation; species composition; variation partitioning

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2009.02085.x

Affiliations: 1: Tall Timber Research Station, Tallahassee, FL 2: Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 3: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Publication date: August 1, 2009

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more