Skip to main content

Cyclamen: time, sea and speciation biogeography using a temporally calibrated phylogeny

Buy Article:

$48.00 plus tax (Refund Policy)

Abstract:

Abstract Aim 

The Mediterranean region is a species-rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo-geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location 

The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods 

A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL-F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal–vicariance analysis. Results 

The emergence of the Cyclamen stem lineage is estimated at 30.1–29.2 Ma, and the crown divergence at 12.9–12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions 

Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.

Keywords: Allopatric speciation; Bayesian analysis; Cyclamen; DIVA; Mediterranean; Myrsinaceae; historical biogeography; molecular dating; palaeoclimate; secondary dating

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2008.01971.x

Publication date: July 1, 2009

bsc/jbiog/2009/00000036/00000007/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more