Skip to main content

Evolution, origin and age of lineages in the Californian and Mediterranean floras

Buy Article:

$43.00 plus tax (Refund Policy)


This paper addresses some of the conceptual issues involved in the analysis of the age and origin of mediterranean-climate plant taxa, paying particular attention to three topics: (1) the importance of an explicit time frame in the definition of biogeographical origins, (2) the distinction between the age of traits and the age of taxa, and (3) the idea of mediterranean-type ecosystems as environmental islands. (1) In California, recent analyses demonstrate that the diversity of species derived from different biogeographical origins is significantly correlated with temperature and precipitation gradients. These patterns support the hypothesis that niche conservatism is an important factor structuring modern diversity gradients. However, depending on how far back in time one looks, a species may be assigned to different origins; future discussions of biogeographical origins need to address the appropriate time frame for analysis. (2) Past research has demonstrated distinctive trait syndromes among woody plants of the Mediterranean, Chile, California and Mexico, and proposed that the syndromes are associated with lineages of different age in these floras. Reanalysis of individual traits demonstrates greater variability among regions than previously reported. The classification of plants into ‘old’ and ‘new’ genera is re-evaluated, and it is suggested that greater attention be paid to the age of traits, rather than to the age of taxa, especially at an arbitrary rank such as genus. (3) The idea of mediterranean-climate regions as ‘climatic islands’ is examined. Space–time diagrams of climate enable one to view the emergence of distinctive climatic regions in a continental context. The terms ‘synclimatic’ and ‘anticlimatic’ are proposed, referring to migration routes that parallel climate contours in space and time versus those that cross contours (including the case of geographic stasis in the face of climate change), respectively. Mediterranean-climate regions have served as important case studies in plant ecology and evolution, and merit continued close examination in the light of continued advances in phylogenetics and palaeoecology.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Adaptive evolution; biogeographical origins; biotic assembly; climate change; diversity; environmental island; mediterranean-type ecosystem; migration; niche conservatism; trait syndromes

Document Type: Research Article

Publication date: 01 July 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more