Skip to main content

Enrichment of land-cover polygons with eco-climatic information derived from MODIS NDVI imagery

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract Aim 

The FAO land-cover classification system (LCCS) represents an innovative approach to standardizing and harmonizing land-cover classifications based on remote sensing data. The thematic information considered by the LCCS, however, is intrinsically related to vegetation physiognomy and does not report important eco-climatic features. Our aim is to develop a methodology to enrich LCCS maps with information on vegetation productivity and phenology derived from Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data. Location 

The LCCS has recently been applied in East Africa by the Africover project. The proposed methodology is developed and tested in Tanzania using MODIS NDVI data for a 5-year period (2001–05). Methods 

Annual NDVI profiles of Africover polygons were extracted from MODIS imagery. These profiles, composed of 23 NDVI values per year, were averaged over the study period, purified for possible land-cover errors and converted into a more manageable format composed of 24 half-month values. The resulting NDVI profiles were first analysed visually and then evaluated statistically against rainfall measurements taken at 12 Tanzanian stations. The steps involved were as follows: NDVI values were aggregated on a monthly basis and represented with a one-digit integer to obtain an extended code; a subset of parameters describing vegetation development and phenology was identified, thus obtaining a restricted codification; and finally, the information loss resulting from both the extended and restricted codification was evaluated with respect to the original NDVI profiles. Results 

NDVI profiles of different Africover classes can differ in mean values but tend to have a similar shape, linked to the seasonality of local vegetation. Both NDVI annual averages and seasonal variations are strictly dependent on rainfall patterns, particularly in arid zones. The tested codifications effectively summarize the eco-climatic information contained in the polygon NDVI profiles, with the extended and restricted codifications retaining > 90% and 80% of such information, respectively. Main conclusions 

The proposed methodology is capable of enriching LCCS polygons with eco-climatic information derived from MODIS NDVI data. Such information is related to vegetation development and seasonality, and can be efficiently condensed at various levels of detail.

Keywords: Codification; East Africa; LCCS; MODIS; NDVI; Tanzania; eco-climatic information; land-cover classification

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2008.01981.x

Affiliations: 1: Food and Agriculture Organization of the United Nations, NRCE Unit, Rome 2: IBIMET-CNR, Sesto Fiorentino, Florence 3: Istituto Agronomico per l’Oltremare, Florence, Italy

Publication date: April 1, 2009

bsc/jbiog/2009/00000036/00000004/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more