Skip to main content

Floristic turnover in Iceland from 15 to 6 Ma – extracting biogeographical signals from fossil floral assemblages

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract Aim 

This study aims to document the floristic changes that occurred in Iceland between 15 and 6 Ma and to establish the dispersal mechanisms for the plant taxa encountered. Using changing patterns of dispersal, two factors controlling floristic changes are tested. Possible factors are (1) climate change, and (2) the changing biogeography of Iceland over the time interval studied; that is, the presence or absence of a Miocene North Atlantic Land Bridge. Location 

The North Atlantic. Methods 

Species lists of fossil plants from Iceland in the time period 15 to 6 Ma were compiled using published data and new data. Closest living analogues were used to establish dispersal properties for the fossil taxa. Dispersal mechanisms of fossil plants were then used to reconstruct how Iceland was colonized during various periods. Results 

Miocene floras of Iceland (15–6 Ma) show relatively high floristic turnover from the oldest floras towards the youngest; and few taxa from the oldest floras persist in the younger floras. The frequencies of the various dispersal mechanisms seen in the 15-Ma floras are quite different from those recorded in the 6-Ma floras, and there is a gradual change in the prevailing mode of dispersal from short-distance anemochory and dyschory to long-distance anemochory. Two mechanisms can be used to explain changing floral composition: (1) climate change, and (2) the interaction between the dispersal mechanisms of plants and the increasing isolation of proto-Iceland during the Miocene. Main conclusions 

Dispersal mechanisms can be used to extract palaeogeographic signals from fossil floras. The composition of floras and dispersal mechanisms indicate that Iceland was connected both to Greenland and to Europe in the early Middle Miocene, allowing transcontinental migration. The change in prevalence of dispersal modes from 15 to 6 Ma appears to reflect the break-up of a land bridge and the increasing isolation of Iceland after 12 Ma. Concurrent gradual cooling and isolation caused changes in species composition. Specifically, the widening of the North Atlantic Ocean prevented taxa with limited dispersal capability from colonizing Iceland, while climate cooling led to the extinction of thermophilous taxa.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Dispersal mechanisms; Iceland; Neogene; North Atlantic; fossil plants; land bridge; palaeobiogeography

Document Type: Research Article

Affiliations: Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden

Publication date: 2007-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more