Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract Aim 

To estimate the relative importance of climate and soil nutritional variables for predicting the distribution of Acer campestre (L.) in French forests. Location 

France. Methods 

We used presence/absence information for A. campestre in 3286 forest plots scattered all over France, coupled with climatic and edaphic data. More than 150 climatic variables (temperature, precipitation, solar radiation, evapotranspiration, water balance) were obtained using a digital elevation model (DEM) and a geographical information system (GIS). Six direct soil variables (pH, C/N ratio, base saturation rate, concentrations of calcium, magnesium and potassium) were available from EcoPlant, a phytoecological data base for French forests. Using a forward stepwise logistic regression technique, we derived two distinct predictive models for A. campestre; the first with climatic variables alone and the second with both climatic and edaphic variables. Results 

The distribution of A. campestre was poorly modelled when including only climatic variables. The inclusion of edaphic variables significantly improved the quality of predictions for this species, allowing prediction of patches of presence/absence within the study region. Main conclusion 

Soil nutritional variables may improve the performance of fine-scale (grain) plant species distribution models.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more