Skip to main content

Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Abstract Aim 

The aim of this study was to test a variant of the evolutionary time hypothesis for the bird latitudinal diversity gradient derived from the effects of niche conservatism in the face of global climate change over evolutionary time. Location 

The Western Hemisphere. Methods 

We used digitized range maps of breeding birds to estimate the species richness at two grain sizes, 756 and 12,100 km2. We then used molecular phylogenies resolved to family to quantify the root distance (RD) of each species as a measure of its level of evolutionary development. Birds were classified as ‘basal’ or ‘derived’ based on the RD of their family, and richness patterns were contrasted for the most basal and most derived 30% of species. We also generated temperature estimates for the Palaeogene across the Western Hemisphere to examine how spatial covariation between past and present climates might make it difficult to distinguish between ecological and evolutionary hypotheses for the current richness gradient. Results 

The warm, wet tropics support many species from basal bird clades, whereas the northern temperate zone and cool or dry tropics are dominated by species from more recent, evolutionarily derived clades. Furthermore, crucial to evaluating how niche conservatism among birds may drive the hemispherical richness gradient, the spatial structure of the richness gradient for basal groups is statistically indistinguishable from the overall gradient, whereas the richness gradient for derived groups is much shallower than the overall gradient. Finally, modern temperatures and the pattern of climate cooling since the Eocene are indistinguishable as predictors of bird species richness. Main conclusions 

Differences in the richness gradients of basal vs. derived clades suggest that the hemispherical gradient has been strongly influenced by the differential extirpation of species in older, warm-adapted clades from parts of the world that have become cooler in the present. We propose that niche conservatism and global-scale climate change over evolutionary time provide a parsimonious explanation for the contemporary bird latitudinal diversity gradient in the New World, although dispersal limitation of some highly derived clades probably plays a secondary role.

Keywords: Climate change; New World birds; evolutionary time; extinction; latitudinal gradient; mean root distance; palaeoclimate; species; species diversity

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2006.01452.x

Affiliations: 1: Departamento de Biologia Geral, ICB, Universidade Federal de Goiás, CP, Goiânia, and Departamento de Biologia, MCAS/PROPE, Universidade Católica de Goiás, Goiânia, GO, Brazil 2: Center for Tropical Paleoecology and Archeology, Smithsonian Tropical Research Institute, Balboa, Panama 3: Network & Academic Computing Services, University of California, Irvine, CA, USA

Publication date: May 1, 2006

bsc/jbiog/2006/00000033/00000005/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more