Skip to main content

Effect of N-fixing and non N-fixing trees and crops on NO and N2O emissions from Senegalese soils

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract Aim 

Agroforestry systems incorporating N-fixing trees have been shown to be socially beneficial and are thought to be environmentally friendly, both enriching and stabilizing soil. However, the effect of such systems on the emissions of the important greenhouse gas nitrous oxide (N2O) and the tropospheric ozone precursor nitric oxide (NO) is largely unknown. Location 

Soil was collected from the research plots of Institut Sénégalais de Recherches Agricoles at Bandia and Bambey, Senegal, West Africa, and from neighbouring farmers’ fields. Trace gas flux measurements and chemical analysis of the soil were carried out at the Centre for Ecology and Hydrology (CEH), Edinburgh, UK. Methods 

Nitric oxide (NO) and nitrous oxide (N2O) emissions were measured following simulated rainfall events (10 and 20 mm equivalents) from repacked soil cores collected under two tree species (Acacia raddiana) and Eucalyptus camaldulensis) in each of two provenance trails. In addition, soil samples were collected in local fields growing peanut (Arachis hypogaea) and Sorghum (Sorghum vulgare), close to the species trials in Bambey. NO was measured using a flow through system and was analysed by chemiluminescence. Nitrous oxide was measured from the repacked soil core headspace and was analysed by electron capture gas chromatography. Soil mineral N was extracted with KCl and analysed by colorimetric methods on separate soil columns. Results 

Light rainfall, which increased the gravimetric soil moisture content to 20%, stimulated an increase in NO emission but there was no detectable N2O emission. A heavy rainfall event, which increased the gravimetric soil moisture to 30%, stimulated N2O emission with a subsequent peak in NO emissions when the soils became drier. Soil collected under the N-fixing tree species emitted significantly more N2O than soil collected under the N-fixing crop species (P < 0.01). NO and N2O emissions significantly correlated with soil available N (NH4 and NO3) (P < 0.05). Main conclusions 

Rainfall intensity, supply of mineral N from organic matter and N fixation were the prime drivers of NO and N2O emissions from seasonally dry tropical soils. The improved soil fertility underneath the trees provided a larger pool of mineral N and yielded larger rates of NO and N2O emissions.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Keywords: Agroforestry; Senegal; nitric oxide; nitrification; nitrous oxide; rainfall intensity; soil available ammonium; soil available nitrate

Document Type: Research Article

Publication date: 2006-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more