Skip to main content

Genetic divergence of three freshwater isopod species from southern New Zealand

Buy Article:

$51.00 plus tax (Refund Policy)


Abstract Aim 

We examined the biogeography of three freshwater isopod species (Austridotea annectens, A. lacustris, A. benhami), and tested the hypotheses that genetic differences would: (1) exist between geographic locations; and (2) correspond to known geological events (e.g. appearance of islands leading to the availability of habitat). Location 

Southern New Zealand, including South Island, Stewart Island, Campbell Island and Chatham Islands. Methods 

We examined specimens throughout the known species range from 12 populations of A. lacustris, five populations of A. annectens, and three populations of A. benhami, using mitochondrial DNA (cytochrome c oxidase I) sequence analyses. Results 

We resolved three main clades corresponding to the three species, with 16% sequence divergence between A. annectens and A. benhami, and 31% divergence between these species and A. lacustris. Divergence within A. benhami was < 2.0%. However, divergence within A. lacustris reached up to 10% with four main groupings: (1) Chatham Islands; (2) Campbell Island; (3) Fiordland; and (4) east coast South Island and Stewart Island. Divergence within A. annectens reached up to 4.4%, with two main groupings: (1) Chatham Islands and (2) east coast South Island and Stewart Island. Patterns of genetic divergence were most likely the result of geographical isolation among A. lacustris and A. annectens populations. In particular, the divergence of A. lacustris and A. annectens on Chatham Islands may correspond to the availability of this habitat c. 4 Ma, whereas the divergence of A. lacustris on the much older Campbell Island and in Fiordland may indicate either a rare founder event or a change in ocean circulation that resulted in their isolation from a once more widespread gene pool. Main conclusions 

The three New Zealand species of Austridotea are genetically distinct, with up to 31% divergence between species. Genetic variability was highest between populations of the two most widely distributed species, and divergence was greatest on islands distant from mainland New Zealand and in the discrete Fiordland region. The magnitude of genetic divergence of isopods on the Auckland and Chatham Islands is consistent with these populations having been founded in the Pliocene via oceanic dispersal from mainland New Zealand.

Keywords: Austridotea; Isopoda; New Zealand; Pliocene isolation; biogeography; mitochondrial DNA

Document Type: Research Article


Affiliations: 1: Department of Biological Sciences, Centre for Biodiversity and Ecology Research, University of Waikato, Hamilton, New Zealand 2: Department of Conservation, Hamilton, New Zealand 3: School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

Publication date: January 1, 2006

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more