Skip to main content

Phylogenetics of the allodapine bee genus Braunsapis: historical biogeography and long-range dispersal over water

Buy Article:

$43.00 plus tax (Refund Policy)

Abstract Aim 

A previous study of the allodapine bee genus Braunsapis suggested an African origin, with dispersal events into Madagascar and Asia, and from Asia into Australia. We re-examine the phylogeny of this genus, using an expanded set of taxa from Madagascar and Malawi and additional sequence data, in order to determine the number of dispersals and the timeframe over which they occurred. Location 

Africa, Madagascar, Malawi, Asia and Australia. Methods 

One nuclear (EF-1α F2) and two mitochondrial (CO1 and Cyt b) gene regions were sequenced for 36 allodapine bee species (including members of the genera Braunsapis, Nasutapis, Allodape, Allodapula, and Macrogalea) and one ceratinine species (Ceratina japonica). We used Bayesian analyses to examine phylogenetic structure and a penalized likelihood approach to estimate approximate ages for key divergences in our phylogeny. Results 

Our analyses indicate a tropical African origin for Braunsapis in the early Miocene followed by very early dispersal into Asia and then a subsequent dispersal, following Asian diversification, into Australia during the late Miocene. There have also been two dispersals of Braunsapis from Africa to Madagascar and this result, when combined with phylogenetic and biogeographical data for other allodapines, suggests that these bees have the ability to cross moderately large ocean expanses. These dispersals may have been aided by the West Wind Drift, but rafting across the Mozambique Channel is also possible, and could be aided by the existence of developmental stages that require minimal or no feeding and by tolerance to sea water and spume. Accumulating evidence suggests that many biogeographical patterns in the southern hemisphere may be better explained by dispersal than by Gondwanan vicariance hypotheses. Our results add to this growing body of data and raise the possibility that some puzzling trans-Indian Ocean distributions may also be explained by historical dispersal events across oceanic barriers that now seem insuperable.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Allodapine bees; Madagascar; Mozambique Channel; dispersal; historical biogeography; phylogenetics; vicariance

Document Type: Research Article

Publication date: 01 December 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more