After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae)

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract Aim 

New Zealand broke away from the margins of Gondwana c. 75 Ma. Since then, New Zealand taxa derived from the Gondwanan biota are thought to have been exposed first to a subtropical climate on a low lying terrain, then severe land reduction during the Oligocene marine transgression, followed by much cooler climates of the Pliocene and Pleistocene, at which time mountain ranges emerged. The biological consequence of New Zealand's geological and climatic history is not well understood, in particular the extent to which the Oligocene acted as a biological bottleneck remains unresolved. Methods 

We used mitochondrial cytochrome oxidase I and 12S DNA sequences to examine the extent of diversity and inferred timing of speciation of New Zealand weta (Anostostomatidae), a group of Orthoptera with a Gondwanan distribution generally thought to be ancient inhabitants of New Zealand. Main conclusions 

We hypothesize that at least three distinct groups of weta survived the Oligocene marine transgression and radiated subsequently. Speciation followed during the Miocene and radiation into new habitats occurred during the Pliocene when mountain building created novel environments. Patterns of genetic diversity within species reflect, in some instances, geographical subdivision in the Pliocene, and in other cases, Pleistocene range changes resulting from climate change.
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more