Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

Abstract Aim 

To assess the relative roles of environment and space in driving bird species distribution and to identify relevant drivers of bird assemblage composition, in the case of a fine-scale bird atlas data set. Location 

The study was carried out in southern Belgium using grid cells of 1 × 1 km, based on the distribution maps of the Oiseaux nicheurs de Famenne: Atlas de Lesse et Lomme which contains abundance for 103 bird species. Methods 

Species found in < 10% or > 90% of the atlas cells were omitted from the bird data set for the analysis. Each cell was characterized by 59 landscape metrics, quantifying its composition and spatial patterns, using a Geographical Information System. Partial canonical correspondence analysis was used to partition the variance of bird species matrix into independent components: (a) ‘pure’ environmental variation, (b) spatially-structured environmental variation, (c) ‘pure’ spatial variation and (d) unexplained, non-spatial variation. Results 

The variance partitioning method shows that the selected landscape metrics explain 27.5% of the variation, whilst ‘pure’ spatial and spatially-structured environmental variables explain only a weak percentage of the variation in the bird species matrix (2.5% and 4%, respectively). Avian community composition is primarily related to the degree of urbanization and the amount and composition of forested and open areas. These variables explain more than half of the variation for three species and over one-third of the variation for 12 species. Main conclusions 

The results seem to indicate that the majority of explained variation in species assemblages is attributable to local environmental factors. At such a fine spatial resolution, however, the method does not seem to be appropriated for detecting and extracting the spatial variation of assemblages. Consequently, the large amount of unexplained variation is probably because of missing spatial structures and ‘noise’ in species abundance data. Furthermore, it is possible that other relevant environmental factors, that were not taken into account in this study and which may operate at different spatial scales, can drive bird assemblage structure. As a large proportion of ecological variation can be shared by environment and space, the applied partitioning method was found to be useful when analysing multispecific atlas data, but it needs improvement to factor out all-scale spatial components of this variation (the source of ‘false correlation’) and to bring out the ‘pure’ environmental variation for ecological interpretation.

Keywords: Atlas; Geographical Information Systems; birds; landscape; partial Canonical Correspondence Analysis; spatial distribution; variation partitioning

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1365-2699.2004.01125.x

Affiliations: 1: Observatoire de la Faune, de la Flore et des Habitats, Gembloux 2: Rue des Marmozets 1, Ciergnon, Belgium

Publication date: November 1, 2004

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more