Skip to main content

Correlates of species richness in North American bat families

Buy Article:

$51.00 plus tax (Refund Policy)


Abstract Aim 

A near universal truth in North America is that species richness increases from the Arctic Circle to the Central American tropics. Latitude is regarded as a major explanatory variable in species density, although it is only a surrogate for underlying ecological variables. I aimed to elucidate those underlying ecological variables that are associated with variation in bat species richness across the entire North American continent, providing a portrait of the macroecology of the order Chiroptera and its familial components. Methods 

I determined the number of bat species recorded for every state in Mexico and the United States, every province or territory in Canada, and every country in Central America. For each of these entities (n = 99), I also gathered basic data on mean annual precipitation, variation across the year (July vs. January) in mean temperature, mean January temperature, range in elevation (topographic relief), per cent vegetative cover and median latitude. Using a variety of linear regression and model-fitting techniques, I analysed the strength and direction of the relationship between species richness and environmental variables for the order Chiroptera as a whole and separately for each of four familial groups: Molossidae (free-tailed bats), Phyllostomidae (New World leaf-nosed bats), Vespertilionidae (evening bats), and a set of six families (the Desmodontidae, Emballonuridae, Furipteridae, Natalidae, Noctilionidae, and Thyropteridae) represented in North America relatively poorly. Results and main conclusions 

Save for the Vespertilionidae, species richness of bats increased towards the Panamanian Isthmus. The Phyllostomidae and the set of miscellaneous families are particularly speciose in tropical Central America, with many fewer species occurring through subtropical Mexico into (in some cases) the southernmost United States. The Molossidae extends farther north, sparingly into the middle of the United States. Species density of the Vespertilionidae peaks in central and western Mexico and the southernmost United States, declining south through tropical southern Mexico and Central America and north through the central United States into Canada. Annual precipitation, January temperature, and topography are good predictors of species richness in the Chiroptera and the Molossidae, precipitation, topography, and temperature range in the Phyllostomidae, January temperature and topography in the Vespertilionidae, and precipitation alone in the collection of families. Vegetative cover explained little variation in the Chiroptera as a whole or in any family. After accounting for the effects of the environmental variables, latitude explained an insignificant amount of the residual variation in species richness. Bat families differ in their ecology, so studies of bat biogeography in North America may be misleading if they are examined only at the ordinal level.

Keywords: Bats; Chiroptera; North America; Passeriformes; Vespertilionidae; climate; macroecology; species richness; topography; vegetation cover

Document Type: Research Article


Publication date: 2004-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more