Skip to main content

Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability

Buy Article:

$43.00 plus tax (Refund Policy)

A comprehensive three‐dimensional fully coupled thermo‐electro‐mechanical finite element framework is developed for modeling spark plasma sintering (SPS). The finite element model is applied to the simulation of spark plasma processing with four different tooling sizes and various temperature regimes. The comparison of modeling and experimental results shows that the model is reliable for qualitative predictions of the densification behavior and of the grain growth in powder specimens subjected to SPS with a given temperature regime. The conducted modeling indicates the possibility of changing the heating pattern of the specimen (warmer central areas of the specimen's volume and cooler outside areas or vice versa) depending on the size of the tooling. High heating rates and large specimen sizes elevate the temperature and, in turn, material structure gradients during SPS processing. The obtained results suggest that the industrial implementation of SPS techniques should be based on the predictive capability of reliable modeling approaches.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Publication date: 2012-08-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more