Electrical and Energy Storage Performance of Eu‐Doped PbZrO3 Thin Films with Different Gradient Sequences

$48.00 plus tax (Refund Policy)

Download / Buy Article:


The Eu‐doped compositionally graded multilayer PbZrO3 antiferroelectric thin films have been deposited on Pt(111)/Ti/SiO2/Si substrates by a solgel method. The effect of gradient sequence on microstructure, electrical properties, and energy storage performance has been investigated in detail. X‐ray diffraction patterns confirm that both thin films have crystallized into a unique perovskite phase. Down‐graded thin films have bigger grain sizes than up‐graded films, which is attributed to the influence of the gradient sequence of the thin films layer. The dielectric constant of down‐graded films is found to be higher than that of up‐graded films. Compared with up‐graded thin films, the energy storage density of down‐graded films is enhanced due to double hysteresis loop with small hysteresis switch, and high polarization.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2012.05130.x

Publication date: May 1, 2012

Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more