Skip to main content

Phase Homogeneity in Y2O3MgO Nanocomposites Synthesized by Thermal Decomposition of Nitrate Precursors with Ammonium Acetate Additions

Buy Article:

$51.00 plus tax (Refund Policy)


Nanocomposite powders with equal volume fractions of Y2O3 and MgO have been produced by the thermal decomposition of precursor mixtures of yttrium nitrate and magnesium nitrate. Solutions of the precursor salts were mixed with ammonium acetate fuel, dried to form a gel‐like substance, and then calcined to give nanocrystalline ceramic powders. The amount of ammonium acetate added to the metal nitrate precursors was varied systematically, and the morphology and distribution of the component phases in consolidated compacts of the resultant ceramic powders were examined by a combination of focused ion beam sectioning, scanning, and transmission electron microscopy. The dispersion of the Y2O3 and MgO phases within the synthesized powders improved, and the sizes of the phase domains reduced, with increasing ammonium acetate content up to the quantity required for a stoichiometric redox reaction with the metal nitrates. The addition of excess ammonium acetate gave no further improvement in phase domain dispersion or reduction in phase domain sizes. These phenomena are related to the thermal characteristics for the decomposition of the precursors and their effect on phase separation during oxide crystallization.

Document Type: Research Article


Publication date: December 1, 2011

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more