Rare-Earth Disilicates As Oxidation-Resistant Fiber Coatings for Silicon Carbide Ceramic–Matrix Composites

Authors: Boakye, Emmanuel E.1; Mogilevsky, Pavel1; Hay, Randall S.2; Cinibulk, Michael K.2

Source: Journal of the American Ceramic Society, Volume 94, Number 6, June 2011 , pp. 1716-1724(9)

Publisher: Wiley-Blackwell

Buy & download fulltext article:

OR

Price: $48.00 plus tax (Refund Policy)

Abstract:

Current SiC-based ceramic–matrix composites (SiC–SiC CMCs) rely on carbon or boron nitride fiber–matrix interphases for toughness and flaw tolerance. However, oxidation of these interphases can be performance limiting in many CMC applications. The γ-polymorph of the rare-earth disilicates (RE2Si2O7) is a potential oxidation-resistant alternative to carbon or BN. The formation of γ-Y2Si2O7 and γ-Ho2Si2O7 at different temperatures and processing environments was investigated. Silica–yttrium hydroxide and silica–holmium hydroxide dispersions were made and heat treated at 1200°–1400°C for 8 h in air and argon. LiNO3 was added to the dispersions to enhance the formation of γ-Y2Si2O7 and γ-Ho2Si2O7. The effects of excess silica and LiNO3 dopant on the formation of γ-Y2Si2O7 were investigated. Coatings of Y2Si2O7 and Ho2Si2O7 were made on α-SiC plate and SCS–0 SiC fiber using these dispersions. These were heat treated in argon and argon—500 ppm oxygen mixtures at 1400°C/8 h. For coatings heat treated in argon—500 ppm oxygen mixtures, X-ray diffraction showed the formation of single phase γ-Ho2Si2O7 and a mixture of γ and β-Y2Si2O7 at 1400°C. Scanning electron microscopic image analysis gave an estimate of 18 vol% of excess silica for γ-Y2Si2O7 formed with high Si:Y ratio and ∼5 vol% excess silica for material formed with lower Si:Y ratio. Transmission electron microscopy of samples directly beneath indentations showed both extensive dislocation slip and fracture.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.04306.x

Affiliations: 1: UES Inc., Dayton, Ohio 45432 2: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433-78173

Publication date: June 1, 2011

Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page