Skip to main content

The Hidden Effect of Interface Energies in the Polymorphic Stability of Nanocrystalline Titanium Dioxide

Buy Article:

$43.00 plus tax (Refund Policy)

Rutile is the thermodynamically stable phase of coarsely crystalline titanium dioxide; however, metastable anatase is frequently present in TiO2 nanoparticles as a result of the lower surface (solid–vapor) energy of this last polymorph. Here, we show that the presence of a solid–solid interface (frequently present due to aggregation or sintering after synthesis and calcination procedures) also markedly influences the polymorphic stability of TiO2 at the nanoscale. By revisiting calorimetric data reported on TiO2 polymorphs, and using a different analysis approach, we derive both surface and interface energies for anhydrous and hydrous interfaces and redraw the stability diagram for anatase and rutile at the nanoscale including an interface term for the first time. The presence of the solid–solid interface (grain boundary) is observed to shift the critical size of the anatase–rutile transition. A similar approach is suggested to be required to provide a better understanding of reported calorimetric data on nanomaterials such as ZrO2 and Fe2O3.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616

Publication date: 2011-03-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more