Skip to main content

Tensile Stress Evolution During the Early-Stage Constrained Sintering of Gadolinium-Doped Ceria Films

Buy Article:

$51.00 plus tax (Refund Policy)


In situ measurements during the constrained sintering of Gd-doped ceria reveal tensile stresses up to ∼250 MPa. These large tensile stresses are likely to contribute to the reduced densification (compared with freely sintered material) typically observed during constrained sintering. While existing models postulate that the tensile stress in a densifying constrained film cannot exceed the “sintering stress,”S, the observed tensile stresses are significantly larger than the estimated S for these materials. To explain this observation, we propose that the formation and extension of interparticle grain boundaries induce substantial tensile stresses in constrained films. A model of this phenomenon shows that converting excess surface energy to elastic strain energy can produce stresses that are comparable to the measured values. Further, if these “cohesive” stresses exceed S, grain-boundary diffusion should initially move material from the neck regions into the grain boundaries, not out of the grain boundaries as described by traditional sintering models.

Document Type: Research Article


Affiliations: 1: School of Engineering, Brown University, Providence, Rhode Island 02912 2: Lawrence Berkeley National Laboratory, Materials Sciences Division, University of California, Berkeley, California 94720

Publication date: 2011-01-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more