Skip to main content

Structure and Dielectric Properties of A-Site-Deficient Perovskite La(1−x)/3AgxNbO3 (0≤x≤0.25) Ceramics

Buy Article:

$43.00 plus tax (Refund Policy)

The crystal structure and dielectric properties of the A-site-deficient perovskites La(1−x)/3AgxNbO3 were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), network analyzer, and impedance analyzer. XRD results showed that no secondary phase was observed in all samples. The crystal structure at room temperature changed from orthorhombic (0≤x≤0.16) via tetragonal (x=0.20) to pseudocubic (x=0.25) symmetry with the increase of x. The dielectric constant (r) and temperature coefficient of resonant frequency (f) of La(1−x)/3AgxNbO3 ceramic increased with the increase of x due to the decrease of tilting angle of NbO6-octahedron. Whereas the quality factor (Q×f) decreased with increasing silver content as result of the decrease of A-site cation/vacancy ordering. Complex impedance analysis and the dielectric properties measured at low frequency showed that the dielectric loss in La(1−x)/3AgxNbO3 at low frequency was mainly caused by the silver ionic conduction, and that the composition of x=0.13 exhibited largest ionic conductivity and hence highest dielectric loss at low frequency. However, the dielectric loss originated from the ionic conductivity decreased with increasing frequency. Vacancy concentration and ionic conductivity in compounds would affect the order–disorder phase transformation for A-site-deficient perovskites. For the composition with higher ionic conductivity, it would undergo order–disorder phase transformation at much lower temperature. Meanwhile, the ionic conductivity or dielectric loss at low frequency increased with the increase of temperature because of the decrease in cations ordering.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Inorganic Materials, Shanghai University, Shanghai 200072, China

Publication date: 2011-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more