If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Synthesis and Characterization of Silver Nanoparticles and Titanium Oxide Nanofibers: Toward Multifibrous Nanocomposites

$48.00 plus tax (Refund Policy)

Download / Buy Article:


A new method was investigated to produce new multiscale fibrous nanocomposites comprised of titanium oxide (TiO2) nanofibers and silver (Ag) nanoparticles (NPs). The process involved electrospinning TiO2 precursor solution containing colloidal solution of Ag NPs, and organic solvent (dimethyl-nn-formamide) to fabricate a porous, nonwoven, free-standing nanofiber mesh. Postprocess heating of the electrospun nanofibers entailed calcination in air environment at 500°C for 3 h. Microemulsion processing was used to generate NPs of Ag in a monodispersed distribution throughout the colloidal solution. X-ray diffraction data were consistent with the anatase phase of TiO2, while transmission electron microscopy and hydrogen desorption measurements revealed a very porous microstructure. It was demonstrated that NP colloidal stability is solvent dependent. It is anticipated that incorporation of metal particles in nanofibers will lead to enhanced photocurrent generation, when used in functional devices.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.03798.x

Affiliations: Institute for Technology Research and Innovation, School of Science and Engineering, Deakin University, Geelong, Victoria 3217, Australia

Publication date: September 1, 2010

Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more