Skip to main content

Electrode Properties of the Ruddlesden–Popper Series, Lan+1NinO3n+1 (n=1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells

Buy Article:

$48.00 plus tax (Refund Policy)


The Ruddlesden–Popper phases, Lan+1NinO3n+1 (n=1, 2, and 3), were synthesized by a solid-state reaction for use as cathodes in an intermediate-temperature (500°–700°C) solid oxide fuel cell. The samples crystallized into an orthorhombic layered perovskite structure. The overall electrical conductivity increased with the increase of n in the intermediate temperature range. Single test-cells, which consisted of samarium-oxide-doped ceria (SDC; Sm0.2Ce0.8Ox) as an electrolyte, Ni–SDC cermet (Ni–SDC) as an anode, and Lan+1NinO3n+1 as a cathode, were fabricated for measurements of cell performance at 500°–700°C. Current interruption measurements revealed that both the ohmic and overpotential losses at 700°C decreased with the increase of n. La4Ni3O10 was found to exhibit the best cathode characteristics in the Lan+1NinO3n+1 series. Maximum test-cell power densities with La4Ni3O10 (n=3) were 10.2, 36.5, and 88.2 mW/cm2 at 500°, 600°, and 700°C, respectively.

Document Type: Research Article


Affiliations: Department of Material and Energy Science, Graduate School of Environmental Science, Okayama University, Tsushima-Naka, Okayama 700-8530, Japan

Publication date: August 1, 2010


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more