Skip to main content

Bilayered BiFe0.95Mn0.05O3/Bi0.90La0.10FeO3 Thin Films with Low Ferroelectric Coercivity and Large Remanent Polarization

Buy Article:

$48.00 plus tax (Refund Policy)

Abstract:

Bilayered thin films consisting of (Bi0.90La0.10)FeO3 and Bi(Fe0.95Mn0.05)O3, i.e., Bi(Fe0.95Mn0.05)O3/(Bi0.90La0.10)FeO3, were deposited on SrRuO3 buffered SrTiO3(111) substrates by off-axis radio frequency magnetic sputtering, where (111)-oriented bilayered thin films were obtained. The bilayered Bi(Fe0.95Mn0.05)O3/(Bi0.90La0.10)FeO3 thin film possesses a lower coercive field (2Ec∼335.6 kV/cm) and a larger remanent polarization (2Pr∼155.2 C/cm2) at room temperature, and a higher relative permittivity as compared with those of single-layer (Bi0.90La0.10)FeO3 and Bi(Fe0.95Mn0.05)O3 thin films, together with an improvement of the magnetic properties (2Ms∼31.2 emu/cm3). The bottom (Bi0.90La0.10)FeO3 nanolayer promotes the growth of the Bi(Fe0.95Mn0.05)O3 layer, which are largely responsible for the multiferroic behavior observed.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.03661.x

Affiliations: Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 117574 Singapore

Publication date: August 1, 2010

bsc/jace/2010/00000093/00000008/art00002
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more