Skip to main content

Elastic and Mechanical Properties of Polycrystalline Transparent Yttria as Determined by Indentation Techniques

Buy Article:

$51.00 plus tax (Refund Policy)


The Young's modulus (E) and nanoindentation (NI) stress–strain curves of fully dense, transparent yttria were determined using a nano-indenter capable of continually measuring the stiffness (S). Two hemispherical indenters with radii of 1.4 and 5 m were used, in addition to a Berkovich tip. The E values—calculated from the S vs. a (contact radius) curves obtained with both spherical indenters (158–171 GPa) were ≈5% lower than the 176 GPa dynamic modulus measured on the same sample using ultrasound. Depending on range of penetration depths, the Berkovich modulus was ≈1%–5% higher than the dynamic modulus. When the NI load-displacement curves were converted to NI stress–strain curves, the yield point obtained was 7 ± 1 GPa. This value was ≈20% and ≈33% lower than the Vickers and Berkovich hardness values measured on the same sample, respectively. The Vickers microhardness values (8.8 ± 0.2 GPa) and the fracture toughness extracted from the latter (1.5 ± 0.3 MPa·m1/2) are in good agreement with published results on samples with comparable microstructures. The strain hardening rates were almost identical for both tips; no tip size effect was observed. Based on this work, we conclude that S vs. a plots are a powerful, and relatively simple, technique to measure the Young's moduli of polycrystalline ceramics and other hard solids. The fact that one also obtains NI stress–-strain curves is a distinct advantage over the more commonly used Berkovich tip.

Document Type: Research Article


Affiliations: 1: Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 2: Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey 08854

Publication date: July 1, 2010

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more