Skip to main content

Ultrahigh-Temperature Semiconductors Made from Polymer-Derived Ceramics

Buy Article:

$51.00 plus tax (Refund Policy)


We report the semiconductor behavior of polymer-derived ceramics at high temperatures extending up to 1300°C, far above that of any known material. The conductivity depends strongly on the N/O molar ratio, reaching its highest value when the ratio is approximately unity. The temperature dependence of the conductivity for these specimens, , shows good agreement with the Mott's variable range hopping (VRH) mechanism for three–dimensional conduction in amorphous materials as described by . The comparison yields the following range of values for the density of states, N(E)=4.9 × 1017–5.9 × 1018 (eV·cm3)−1, hopping energy, W=0.017–0.047 eV, and hopping distance, R=13.4–21.8 nm. The charge carrier mobilities predicted by the VRH model are in excellent agreement with the values measured in the Hall experiment. The long hopping distances are an unusual feature of this ceramic, suggesting long-range wave functions that may arise from clusters of SiCNO atoms that can exist in the form of a nanodomain network. Specimens that are either rich in oxygen (at the expense of nitrogen) or rich in nitrogen, have conductivities that are four to eight orders of magnitude lower than the ∼equimolar compositions. One oxygen-rich specimen shows band-gap controlled semiconductivity with an activation energy of 1.1 eV. Taken together, these results suggest that the electronic properties of the SiCNO ceramics are controlled by complex interactions between C and other atoms (Si, N, and O). These results are at variance with the simple picture where “free carbon” is assumed to determine the electronic behavior.

Document Type: Research Article


Affiliations: 1: Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309–0427 2: National Renewable Energy Laboratory, National Center for Photovoltaics, Golden, Colorado 80401

Publication date: June 1, 2010


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more