The Thermodynamic Significance of Order Parameters During Glass Relaxation

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

The thermodynamic state of a glass is often described in terms of a number of order parameters, each of which evolves toward its equilibrium value during glass relaxation. The problem comes in identifying these order parameters and determining their physical significance. The authors argue that the order parameters in a glass can be defined in terms of a set of configurational temperatures, each corresponding to a particular mode of energy storage. The evolution of glass properties can then be calculated using a coupled set of rate equations describing the relaxation of the configurational temperatures toward their equilibrium values, viz., the reservoir temperature. The authors illustrate the concept of configurational temperatures by considering the free energy of mixing in alkali borate and silicate glasses.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2009.03559.x

Affiliations: Science and Technology Division, Corning Incorporated, Corning, New York 14831

Publication date: April 1, 2010

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more