Skip to main content

Surface Chemistry of Ion Irradiated and Heat-Treated Mullite-Type Bi2Ga4O9 Single Crystals

Buy Article:

$51.00 plus tax (Refund Policy)


The gas–solid interface of ceramics is a key aspect, since it is where reactions occur and sensing signals are generated. Therefore the chemistry of as-grown mullite-type Bi2Ga4O9 (110) single-crystals surfaces and its change due to thermal treatments (500°–800°C) under ultra high vacuum conditions and irradiation by low energy ions (Ar+) have been investigated by in situ X-ray photoelectron spectroscopy. Ion bombardment causes preferential sputtering of O atoms bonded to Bi, and partial reduction of Bi3+ to metallic Bi0, whereas Ga3+ is not affected. Upon annealing under vacuum conditions, simultaneous O and Bi interdiffusion from the bulk of the crystals and segregation onto the surfaces on the one hand, and sublimation of metallic Bi present on the outermost surface layers on the other hand have been observed. Because of these dynamical processes the chemical composition of the surface, above 600°C recovers to the nominal (110) surface stoichiometry and to the Bi3+ and Ga3+ oxidation states of Bi2Ga4O9. The same effects were found by annealing the single crystals in air at 700°C. Changes of the morphology of the mullite-type Bi2Ga4O9 (110) single-crystals surfaces upon ion irradiation and thermal treatments have been monitored by atomic force microscopy. Ion irradiation produces a significant sputtering-induced increase of the surface roughness. The smooth pillow-like structure of the irradiated surfaces after annealing at 700° and 800°C may indicate the partial formation of a glassy or pseudo-amorphous phase.

Document Type: Research Article


Affiliations: 1: Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, E-28049 Madrid, Spain 2: Institut fuer Kristallographie, Universitaet zu Koeln, Zuelpicher Str. 49b, 50674 Koeln, Germany

Publication date: 2009-12-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more