Skip to main content

Double Hysteresis Loop and Aging Effect in K0.5Na0.5NbO3–K5.4Cu1.3Ta10O9 Lead-Free Ceramics

Buy Article:

$43.00 plus tax (Refund Policy)

In this work, the double-loop-like characteristics of K0.5Na0.5NbO3+x mol% K5.4Cu1.3Ta10O9 ceramic and its relationships with the transition temperature, aging, and switching have been investigated. Our results reveal that the phase transition temperature is an important parameter determining the aging requirement for the ceramics to exhibit the double-loop-like characteristics. For a ceramic with a high transition temperature, e.g. the ceramic with x=0.75 (tetragonal–orthorhombic phase temperature ∼206°C), the vacancies can migrate during the crystal transformation and settle in a distribution with the same symmetry as the crystal after the transformation. As a result, defect dipoles along the polarization direction are formed and provide restoring forces to reverse the switched polarizations, and thus producing a double polarization hysteresis (PE) loop. On the other hand, aging is required for a ceramic with a low transition temperature, e.g. aging at 80°C for 30 days is required for the ceramic with x=1.5 (transition temperature ∼175°C). Our results also reveal that the defect dipoles can be switched under a slow-switching electric field (<1 Hz) or at high temperatures (>100°C), thus leading to an opening of the double PE loop.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Publication date: 01 June 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more