Skip to main content

Precipitation Coating of Rare-Earth Orthophosphates on Woven Ceramic Fibers—Effect of Rare-Earth Cation on Coating Morphology and Coated Fiber Strength

Buy Article:

$51.00 plus tax (Refund Policy)


Monazite (La, Ce, Nd, and GdPO4) and xenotime (Tb, Dy, and YPO4) coatings were deposited on woven Nextel 610 and 720 fibers by heterogeneous precipitation from a rare-earth citrate/phosphoric acid precursor. Coating phases and microstructure were characterized by SEM and TEM, and coated fiber strength was measured after heat treatment at 1200°C for 2 h. Coated fiber strength increased with decreasing ionic radius of the rare-earth cation in the monazite and xenotime coatings, and correlates with the high-temperature weight loss and the densification rate of the coatings. Dense coatings with trapped porosity and high weight loss at a high temperature degrade fiber strength the most. The degradation is consistent with stress corrosion driven by thermal residual stress from coating precursor decomposition products trapped in the coating at a high temperature.

Document Type: Research Article


Affiliations: 1: Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 2: UES, Inc., Dayton, Ohio

Publication date: July 1, 2008


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more