The Effect of Yttrium on Oxygen Grain-Boundary Transport in Polycrystalline Alumina Measured Using Ni Marker Particles

$48.00 plus tax (Refund Policy)

Download / Buy Article:

Abstract:

The grain-boundary transport of oxygen in polycrystalline α-Al2O3 (undoped and 500 ppm Y3+-doped) was studied in the temperature regime of 1100°–1500°C by monitoring the oxidation of a fine, uniform dispersion of Ni marker particles (0.5 vol%). The annealing treatments were carried out in a high-purity O2 atmosphere (>99.5%). The Ni particles, which are visibly oxidized to nickel aluminate spinel, were used to determine the depth of oxygen penetration. The thickness of the reaction zone was measured as a function of heat-treatment time and temperature, and a comparison of the oxidation rate constants and activation energies for undoped and Y3+-doped alumina was made. The results indicate that the presence of Y3+ slows oxygen grain-boundary transport in alumina by a variable factor of from 15 to 3 in the temperature regime of 1100°–1500°C. The values of the activation energy for undoped and Y3+-doped alumina were determined to be 430±40 and 497±8 kJ/mol, respectively.

Document Type: Research Article

DOI: http://dx.doi.org/10.1111/j.1551-2916.2008.02391.x

Affiliations: Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania 18015

Publication date: June 1, 2008

Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more