Skip to main content

High-Temperature Instability of Li- and Ta-Modified (K,Na)NbO3 Piezoceramics

Buy Article:

$43.00 plus tax (Refund Policy)

This paper addresses the high-temperature instability of Li- and Ta-modified (K,Na)NbO3 piezoceramics. The grains with abnormal size evolve out of the fine matrix grains during high-temperature annealing. They are found to be precipitates with a tetragonal tungsten bronze structure, which result from the volatilization and segregation of the alkali metal elements. With the growth of the abnormal grains the composition of the perovskite matrix phase also changes remarkably, as has been suggested by EDX analysis (for Na) and electric measurements (for Li). These variations lead to a large increase in the tetragonal/orthorhombic phase transition temperature and appreciable variations in the dielectric, ferroelectric, and piezoelectric properties of the ceramic samples. Control of the volatilization of the alkali metal elements can efficiently depress the abnormal grain growth and the compositional segregation.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015, Switzerland

Publication date: 2008-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more