Skip to main content

Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review

Buy Article:

$43.00 plus tax (Refund Policy)

This article briefly reviews recent applications of phase-field method to ferroelectric phase transitions and domain structures in thin films. It starts with a brief introduction to the thermodynamics of coupled electromechanical systems and the Landau description of ferroelectric transitions in homogeneous ferroelectric single crystals. The thermodynamic potentials of a homogeneous crystal under different mechanical boundary conditions are presented, including the thin-film boundary conditions. The phase-field approach to inhomogeneous systems containing domain structures is then outlined. It describes a domain structure using the spatial distribution of spontaneous polarization. The evolution of a domain structure towards equilibrium is driven by the reduction in the total-free energy of an inhomogeneous domain structure including the chemical driving force, domain wall energy, electrostatic energy as well as elastic energy. A number of examples are discussed, including phase transitions and domain stability in ferroelectric thin films and superlattices. It is demonstrated that using a set of independently measured thermodynamic parameters for the corresponding bulk single crystals, the phase-field approach is able to quantitatively predict not only the strain effect on phase transition temperatures but also the correct ferroelectric domain structures for a given strain and temperature.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Materials Science and Engineering and Materials Research Institute, the Pennsylvania State University, University Park, Pennsylvania 16802

Publication date: 2008-06-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more