Skip to main content

Pressureless Sintering of Zirconium Diboride Using Boron Carbide and Carbon Additions

Buy Article:

$51.00 plus tax (Refund Policy)


The synergistic roles of boron carbide and carbon additions in the enhanced densification of zirconium diboride (ZrB2) by pressureless sintering have been studied. ZrB2 was sintered to >99% relative density at 1900°C. The combination of 2 wt% boron carbide and 1 wt% carbon promoted densification by removing surface oxide impurities (ZrO2 and B2O3) and inhibiting grain growth. Four-point bending strength (473±43 MPa), Vickers' microhardness (19.6±0.4 GPa), fracture toughness (3.5±0.6 MPa·m1/2), and Young's modulus (507 GPa) were measured. Thermal gravimetry showed that the combination of additives did not have an adverse effect on the oxidation behavior.

Document Type: Research Article


Affiliations: Department of Materials Science and Engineering, University of Missouri-Rolla, Rolla, Missouri 65409

Publication date: 2007-11-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more