Skip to main content

Porous, Functionally Gradient Pyroelectric Materials

Buy Article:

$51.00 plus tax (Refund Policy)

Properties of a new type of pyroelectric ceramic structure containing a layer of known porosity laminated between two dense layers, to form a functionally gradient material (FGM), are reported. The combination of theoretical models for pyroelectric, dielectric, and thermal properties gave a model for the pyroelectric voltage figure of merit (FV) in good agreement with experiment, which had shown a 20% improvement for an introduced central layer porosity of 27%. Preliminary pyroelectric responsivity measurements on FGM infrared detectors indicated an even better improvement. It is postulated that this is due to the porous layer acting as a thermal barrier in the structure.
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: School of Industrial and Manufacturing Science, Cranfield University, Cranfield, Bedfordshire MK43 0AL, U.K.

Publication date: 2007-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more