Skip to main content

Microstructure and Electrical Properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 Lead-Free Piezoceramics

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

Microstructure and electrical properties of manganese oxide (MnO)-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 (NBBT) piezoceramics were investigated in this work. X-ray diffraction analysis shows that the suitable substitution of Mn ion into the B site induces the lattice distortion of perovskite NBBT: the solution limit is at 0.3 wt% MnO. Besides, it is observed that the sintering properties can be improved by adding a small amount of MnO, thus increasing the grain size and the relative density. Further, the temperature dependence of the dielectric permittivity of NBBT ceramics indicates that the MnO addition reconstructs the disorder array destroyed by joining BaTiO3 in the Na0.5Bi0.5TiO3 system due to the sizable radius of the B-site cations. Combining these effects of MnO addition, the optimal electrical properties were acquired for NBBT ceramic with addition of 0.30 wt% MnO. The excellent electrical properties of MnO-doped NBBT ceramics indicate its promising application in large displacement actuators.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1551-2916.2006.01349.x

Affiliations: College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, China

Publication date: 2007-01-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more