Skip to main content

Microcontact Printed BaTiO3 and LaNiO3 Thin Films for Capacitors

Buy Article:

$51.00 plus tax (Refund Policy)

Abstract:

There is an ongoing need to develop new technologies to enable further down-scaling of layer thicknesses in multilayer ceramic devices, for example, in multilayer capacitors (MLC). Microcontact printing of chemical solutions of both the dielectric and electrode layers was explored as an economical means of preparing patterned thin films for MLC without requiring photolithography. For this purpose, methanol/acetic acid-based BaTiO3 solutions were spun onto polydimethylsiloxane stamps, printed onto substrates, pyrolyzed, and crystallized. LaNiO3 was used as a prototype electrode that could also be microcontact printed. The line edge roughness produced this way was on the order of a tenth of a micrometer, which should enable very small margins. The printed layer thickness was also very uniform. Microcontact printed capacitors with a single dielectric layer were fabricated and found to have dielectric constants >800 with loss tangents <2%. Alignment between subsequent layers is readily achieved. Multilayer dielectric/electrode stacks could be fabricated without cracking or delaminations. Consequently, microcontact printing appears to be a viable potential means of preparing MLC with layer thicknesses in the range of ≤0.2 m.

Document Type: Research Article

DOI: https://doi.org/10.1111/j.1551-2916.2006.01137.x

Affiliations: 1: Materials Research Institute and Materials Science and Engineering Department, The Pennsylvania State University, University Park, Pennsylvania 16802 2: KEMET Electronics Corporation, Fountain Inn, South Carolina 29644

Publication date: 2006-09-01

  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more