Skip to main content

Modeling Electrophoretic Deposition on Porous Non-Conducting Substrates Using Statistical Design of Experiments

Buy Article:

$43.00 plus tax (Refund Policy)

Statistical design of experiments was used to model electrophoretic deposition of yittria-stabilized zirconia (YSZ) particles on porous, non-conducting NiO–YSZ substrates. A 23–full-factorial matrix with three repetitions of the centerpoint was augmented with six axial runs and two additional centerpoints to form an inscribed central composite design. Fixed ranges of substrate firing temperature (1100°–1300°C), deposition voltage (50–300 V), and deposition time (1–5 min) were used as the independent design variables to model responses of YSZ deposition thickness, area-specific interfacial resistance (ASR), and power density. Regression equations were determined, which were used to optimize deposition parameters based on the desired responses of low interfacial polarization resistance and high-power density. Low substrate firing temperature (1100°C) combined with a low voltage (50 V) and minimal deposition time (1 min) resulted in a 6 m-thick YSZ film, a power density of 628 mW/cm2, and an ASR of 0.21 Ω·cm2. Increasing the substrate firing temperature, voltage, and time to 1174°C, 215 V, and 3 minutes, respectively, reduced the ASR to 0.19 Ω·cm2, increased YSZ film thickness to 25 m, but had only a negligible effect on power density (600 mW/cm2).
No References
No Citations
No Supplementary Data
No Data/Media
No Metrics

Document Type: Research Article

Affiliations: 1: School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 2: Regional Research Laboratory (CSIR), Bhubaneswar 751013, India 3: School of Engineering, Alfred University, Alfred, New York 14802

Publication date: 2006-09-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more