Skip to main content

Thermal Behavior of BaTiO3 Particles Synthesized by Plasma Chemical Vapor Deposition

Buy Article:

$43.00 plus tax (Refund Policy)

The thermal behavior of nanoparticles BaTiO3, prepared by a radio-frequency plasma chemical vapor deposition (RF-plasma CVD) method, was characterized by various analysis methods. The BaCO3 phase was included in the powder as byproducts, which is also observed in hydrothermal BaTiO3 powder. The BaCO3 phase decomposed and disappeared by annealing at 873 K for 30 min. H2O, N2, CO2 and H2, were detected by a thermal desorption spectra measurement from BaTiO3 powder. The annealed powder became well-crystallized particles without grain growth, although as-prepared powder included polycrystalline particles. We successfully observed in-situ grain growth for BaTiO3 nanoparticles by thermal transmission electron microscope. At the initial step of normal grain growth, very fine particles with 40–60 nm diameters started to merge into the larger grains around 1083 K. The migration rate was measured by video images and a grain boundary diffusion coefficient Dgb was calculated.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Electron Microscope Laboratory, Faculty and Technology, Ryukoku University, Ryukoku, Japan 2: Graduate School of Materials Science and Technology, Kyoto Institute of Technology, Kyoto, Japan

Publication date: 2006-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more