Skip to main content

Effect of Relative Humidity on the Viscoelastic and Mechanical Properties of Spray-Dried Powder Compacts

Buy Article:

$51.00 plus tax (Refund Policy)


Spray-dried powder compacts exhibit viscoelastic properties such as stress relaxation, creep, and delayed elastic strain. This behavior is attributed to the organic binder, which forms bridges between the particles in spray-dried granules, thereby affecting their deformation characteristics. The viscosity and distribution of the binder within the powder compact can affect its mechanical and viscoelastic properties. In this study, the powder was conditioned at different ambient relative humidity (RH) levels, to vary the binder viscosity. Load deformation, stress relaxation, fracture strength, and fracture toughness behavior of ferrite powder compacts were studied as a function of ambient RH both before and after compaction. The loading rate was found to significantly affect the time-dependent response, and the relaxation times decreased at high humidity levels during compaction. It is proposed that increasing the humidity level during compaction increases the number of particle–particle contacts. This simple mechanism of binder redistribution led to slower relaxation times, increases in fracture strength, and elastic modulus of the green bodies, without significantly altering the fracture toughness when powders were compacted at high humidity to a given density.

Document Type: Research Article


Affiliations: Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Publication date: 2006-04-01

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more