Skip to main content

Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces

Buy Article:

$51.00 plus tax (Refund Policy)


The surface structure of silica glasses has been simulated using molecular dynamics. The surface hydroxyl concentration was estimated to be 4.5/nm2, based on surface defect statistics. Hydroxyl-silica potentials were developed and used to study the hydroxylation of silica surface. It is found that the energy of chemisorption of water declines in the sequence: three coordinated silicon (Si3) and non-bridging oxygen (NBO) on separate sites, Si3 and NBO on combined sites, two- and three-membered rings. Partial hydroxylation of the most reactive sites, which leads to an OH coverage of 2.5/nm2, was studied. Structural relaxation after hydroxylation was observed.

Document Type: Research Article


Affiliations: Center for Glass Research, New York State College of Ceramics, Alfred University, Alfred, New York 14802

Publication date: September 1, 2005

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more