Skip to main content

Fabrication of Photonic Crystal with a Diamond Structure Having an Air Cavity Defect and its Microwave Properties

Buy Article:

$51.00 plus tax (Refund Policy)


Three-dimensional photonic crystals with a diamond lattice structure consisting of 5 × 5 × 5 unit cells with the unit cell dimension of 15 mm were fabricated using TiO2-based ceramic particles dispersed epoxy by stereolithography. The diamond lattice showed a perfect band gap between 14.3 and 15.8 GHz. An air cavity defect with a rectangular shape (15 mm × 45 mm × 15 mm) was introduced at the center of the crystal by extracting 3 unit cells in order to investigate the shape effect of the defect on the formation of localized defect modes of electromagnetic wave. When microwaves were radiated normal to the wide sides (45 mm × 15 mm) of the rectangular shape defect, a sharp localized mode appeared at the middle of the band gap. However, no localized mode was observed for incident waves normal to the smaller side (15 mm × 15 mm) because of the symmetry mismatching between internal eigenmodes in the defect cavity and incident plane waves. The mode analysis using a simple cavity model showed the penetration of the electric field of resonant modes about 2.4 mm into the host lattice.

Document Type: Research Article


Affiliations: 1: Joining and Welding Research Institute, Osaka University, Osaka 567 0047, Japan 2: National Institute for Materials Science, Ibaraki 305 0003, Japan 3: Department of Physics, Faculty of Science, Shinshu University, Matsumoto 390 8621, Japan

Publication date: September 1, 2005


Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more